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Introduction 
This project advances the program of development that started with the “wriggler 
project” and that continued with the “metamorphosis project” (Wriggler I,  an 
engineered organism (2020); Metamorphosis of Wriggler I:  device development 
for residential movements (2021)).   
The program's long-range goals include designs for engineered organisms that can 
produce large repertoires of movements and that select movements on the basis of 
momentary influences arising from current goals and situation and from sensory 
modules that measure bodily conditions and detect external objects and events.    
The original wriggler project constructed an imaginary Virtual Energy (VE) 
domain in which a linear array of modules (resembling segments of an animal's 
spine) produces classes of movements called "remotely-controlled movements" or 
"remote movements."  In anticipated large-scale designs, such remote movements 
originate in a scriptorium in the head of an engineered organism and are 
represented in scripts prior to actual production.  Scripted movements are unified 
with operations of VE control devices (“bursters”) and with symbolic forms 
resembling mathematical groups.  The remotely-controlled movements of the 
wriggler project are detached from environmental conditions and detached from 
each other.  Any individual movement in a series of movements can be delayed 
without changing the final result.  Operations occur in detached time.    
The metamorphosis project investigated extensions of the VE domain so as to 
include various “residential movements,” especially wavy movements.  Such 
movements would be produced by a sensorium in the body of the organism by 
means of operations that "reside" in the spinal array and that respond to sensory 
signals and other influences.  Residential operations in the extended VE domain 
occur in a controlled time that mimics the actual time shared by material bodies 
that move and change.  Designs for production of actual wavy movements were 
beyond the reach of the metamorphosis project and investigations therein focused 
on device developments that appeared to have potential use in reaching such goals. 
Designs in this project advance towards residential goals.  Arrays of device parts 
constructed below do produce wavy locomotion movements in a controlled-time  
VE domain.  However, the approach is from a different direction.  Here, designs 
start with a standard paradigm of wavy movements investigated in classical 
mechanics and mathematical physics — the Simple Harmonic Oscillator or SHO.   
For purposes here, a “paradigm” is a simple, idealized mental construction or 
invention that operates in an imaginary domain and that can be used in practical 
applications.  Geometry is an ancient exemplar.  I have such a view of paradigms 
of physics such as the SHO, atoms, electromagnetic waves and conserved energy.  
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Device parts in electronics circuits provide more recent examples.  Electronics 
parts purchased by working engineers and hobbyists perform as represented in 
specifications, within a range of approximation that may vary according to price 
(e.g., ±1%, ±5%, ±10%).  Performance according to specifications does not depend 
on the researcher, time or surroundings.  Thus, physics paradigms (mental 
constructions) are realized, approximately and in limited domains of application, 
by means of technologies, including devices, tools and manuals that define 
operations in words and symbols. Performance features of VE designs, e.g., in this 
project, are intended for similar realization in technologies.   
Here, investigations start with movements of the SHO, which are shown in designs 
made of mechanical device parts:  (1) small solid bodies (balls or blocks) with 
defined masses and (2) springs that manifest forces described  by Hooke’s Law 
and that are approximately realized by steel wires and rods bent into helix shapes.  
Friction and dissipation are initially excluded from the imaginary domain and then 
added back in the single form of viscosity of a surrounding fluid.    
Then, in new developments, additional parts are added to classical paradigms, 
beginning with VE devices called "movers" that produce forces which drive 
movements.  The result is a hybrid module that produces repertoires of movements 
described by classical physics.  In locomotion movements constructed below, an 
array of device parts that resembles a segmented worm travels on a linear track 
with certain degrees of freedom, chiefly, direction, mode and size of a step. 
Thus, movements in a classical physics domain are re-constructed as movements in 
an extended Virtual Energy domain.   
Further anticipated developments in the VE domain aim at operations of bursters in 
modular and collective bodies; such operations control the movers that drive 
residential wavy movements.  Designs in this project suggest approaches to such 
operations.  A chief method is adaptation of principles from mathematical physics 
related to the SHO.  Foremost are extremum principles and a principle of bodily 
experimentation, discussed in the metamorphosis project.   Extremum principles 
are borrowed from standard physics paradigms where maximum and minimum 
values of mathematical forms are called least time, least action and least constraint.  
In VE designs, anticipated extremum principles apply to repetitive cyclical 
operations of modules and bodies and include least time, least consumption of VE 
and least effort (cumulative stress).   
The principle of bodily experimentation attributes operational values to conditions 
of the body containing VE modules rather than to mathematics.  Variational 
methods of mathematics become variations in properties of the body.  An 
experiment starts with a guess for initial operations that produce classes of results 
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subject to a test or standard.  Perhaps the initial guess produces results that poorly 
approximate the standard and/or that work slowly and/or that waste energy.  Next, 
properties of bodies of modules are varied and various results are compared, 
choosing a "better result" as a step in further experiments.  The aim is progressive 
betterment.  New versions of modules and new kinds of devices are also welcomed 
in such experiments.  Similar developments have occurred in the technology of 
internal combustion engines, where the extremum principle or standard is "100% 
efficiency" in conversion of energy in chemical bonds in fuel into kinetic energy of 
a motor vehicle.      
An ideal reader is familiar with SHO physics paradigms, as well as the wriggler 
and metamorphosis projects.  Constructions herein stand independently “on their 
own” but draw on these sources.  Concepts are chiefly expressed by means of 
figures and progressions of figures that make up the constructions.    
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Part A.  Individual Oscillator 
§ 1. Simple harmonic oscillator made of a mass and a spring 
The construction begins with the paradigm of the simple harmonic oscillator (or 
SHO), a fundamental model of physics with a heritage that stretches from Robert 
Hooke, through Newton, the Bernoullis, Lagrange, Fourier, Rayleigh and 
Schrödinger to the quantum mechanics used in semiconductors. 
Construction of the SHO starts with an ideal spring attached to a fixed support, as 
shown in Fig. 1(a).  The only property of the ideal spring is the stiffness k that 
controls movements.  Springs vary in stiffness from “flexible” or "weak" (low k) to 
"rigid" or “strong” (high k)  The ideal spring has no mass.  There is no friction at 
this stage of development and gravity is ignored throughout.    
In Fig. 1a., the spring is shown in a 
unique unstressed static position where 
no forces are present and nothing moves.   
In Fig. 1b, the unstressed static position 
is denoted as “y0.”  A metal ball is 
attached to the spring, with mass m and 
charge q.  Although there is no gravity, 
the mass carries kinetic energy when the 
ball is moving.     
  

 

As shown in Fig. 2, an upward-directed 
electric field E slowly increases from 0.  E 
produces an upward-directed force Fq on the 
ball equal to E × q, causing the ball to rise.  
As a result, the spring produces a 
downward-directed force Fk with a size 
equal to k × ∆y, where ∆y is the change in 
position from the unstressed static position 
to the stressed static position.     

“Fk =  –  k × ∆y” or “Fk =  –  k × (y – y0)” is called Hooke’s Law.  The minus sign 
indicates that as ∆y grows bigger upward, Fk grows bigger downward.    
The increase in E is so slow that the ball stops moving if the field stops increasing.  
(This is a quasi-static or “nil momentum” restriction, which vanishes when friction 
is introduced.  Without the restriction, the ball jiggles perpetually.)   
In other words, in a stressed static position, the net force on the ball FB is equal to 0.  
In symbols, 0 = FB = Fq + Fk = (E × q) + (–k × ∆y) and  ∆y = (q/k) × E. 
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A spring in the unstressed static position or in any stressed static position is in a 
condition called equilibrium.  A static equilibrium condition can be maintained for 
an indefinite period of time.  Movement requires a change in influence. e.g., in E.   
If investigations are repeated with electric fields of equal strength but directed 
downward, everything in the new cases is "the same" as formerly, except for some 
changes in signs: terms that are "+" turn into the same value but "–"; and vice-
versa.  Originally, the spring was pushing; in the new cases, the spring is pulling.  
Each movement occurring in the half-range of spring compression has an exact 
match in the half-range of spring expansion, except for signs.  For the ideal spring, 
the relationship between  ∆y and Fk is “the same” for spring expansion as for 
spring compression.  The position y0 is at the center of the whole range of motion.  
["The same" denotes identity in imaginary domains; a sufficiently close 
resemblance is often realized approximately and/or temporarily in actual events.  
An ideal mental spring has "the same" stiffness forever but actual springs 
eventually fall short of the ideal.] 
Next, the paradigm is extended to dynamic movements, where the ball is moving.  
For the ideal spring, the relationship between ∆y and Fk is the same for dynamic 
movements as for static positions.   
Suppose that the Fig. 2 system is 
held in a static position where 
∆y = +A, as shown in Fig. 3. 
Then, suddenly, at t = 0, the 
electric field is removed.  The 
compressed spring pushes the 
ball down, giving it speed and 
momentum.  As the ball passes 
through y0, pushing from the 
spring changes into pulling; and 
the movement slows until it 
pauses at the point of maximum 
expansion where ∆y = –A.     

 
After pausing, the ball begins the return trip.  On the return trip, the ball speeds up, 
pulled by the spring, until it passes through the central point y0.  Then, pulling 
changes back into pushing, slowing the ball until it reaches the point of maximum 
compression of the spring at ∆y = +A, where it pauses before beginning the next 
cycle of movement.  Points of maximum expansion and compression are the same 
distance A from y0.  Next, the whole prior movement is repeated.  Because there is 
no friction, the movement repeats until stopped.   
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The movement of the ball is summarized in Fig. 3.  The governing equation is 
FB = – k×∆y or m×(d2∆y/dt2) = – k×∆y.  The solution  of this differential equation 
is shown on the graph with time t on the x-axis and position y(t) on the y-axis.  
Time starts from 0 when the field is removed.  The position of the ball is described 
by a periodic or cyclical function with a period τ.  For a periodic function, 
f(t+τ) = f(t), where f(t) is expressly defined over the first period, where t ∈ [0,τ).  
Periods link up in the fashion of repetitive tiles that continue indefinitely.   
The maximum amplitude of the movement (A) is independent of the period of 
movement (τ).  Movements with different maximum amplitudes have the same τ. 

The natural frequency of the system ω0 is defined as 2π/τ.  For the SHO, 
ω0

2 = k/m.  The movement is described by the function ∆y(t) = A × cos(ω0t).   
Moments of pause are important features in designs below.  During a pause, the 
ball is not moving.  Suppose that, as the ball pauses, a magnetic apparatus enables 
a researcher to stick the ball to a background sheet on which the system is mounted.  
Then, some time later, it is possible to release the ball.  When it is released, the ball 
will resume movement as if no interruption had taken place.  The resumed 
movement is the same as an uninterrupted movement, except for a shift in time.  It 
is only when the ball pauses that it can be stuck and later released for a resumption 
of identical movement.  In final designs of this project, "pausal moments" and 
"sticking states" become essential features of locomotion movements. 
 
§ 2. Harmonic oscillator with damping and pumping 

Dissipation or loss of energy is 
introduced, arising from friction or 
viscosity of a surrounding fluid 
shown in blue in Fig. 4.   
Dissipation is based on movement 
of the ball through the fluid and is 
denoted by a damping parameter 
β.  β has a dimension of 1/sec, 
same as ω0, and β can be compared 
to ω0.  In Fig. 4, a case of low 
dissipation,  β is much less than ω0.          
The governing equation becomes m×(d2∆y/dt2) = FB = – (k×∆y) – 2m×β×(d∆y/dt).  
As the ball rises above y0, both the spring and viscosity slow down the movement.  
For low dissipation, as in Fig. 4, the movement has a succession of high points.  
The maximum amplitude of ∆y at successive high points goes down as time 
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proceeds.   The period between successive high points, τ, is fixed, thus extending 
the concept of a periodic function.   In symbols, the movement is described by:   
∆y = A × e–βt × cos(ωdt), where ωd is the damped frequency.  For low dissipation, 
ωd is slightly less than ω0. ωd approaches ω0 as β = 0. 
Next, energy is pumped into the damped system to overcome the decline in 
amplitude.  As a useful metaphor, a parent pumps energy into the body of their 
child riding on a playground swing.  Suppose that the movement of the child’s 
body is exactly repetitive, receiving the same push and reaching the same height 
during each cycle.  Once each cycle, the parent provides the needed push.  In such 
metaphor, the applicable paradigm is the pendulum paradigm, which is similar to 
the SHO paradigm.  Like the damped SHO, the swing has friction and the child 
would come to a resting position if the parent did not pump energy into the system.   
For an individual harmonic oscillator in damped dynamic motion, pumping can be 
provided by an electric field that pulls in the same direction as the spring.  Suppose 
that an upward-directed field is turned “on” just after the moment of pause at 
maximum expansion of the spring.  The field is held “on” until the ball passes y0, 
when the field is turned “off.”   The field is thus held "off" for about ¾ of the cycle. 
If the "on" strength of the field is held steady for successive cycles, the point of 
maximum compression of the spring will stay the same.  Starting from such 
repetitive cycles, the point of maximum spring compression can be raised or 
lowered by increasing or decreasing the strength of the electric field, within a 
range of movement.  Thus, the amplitude of movement is variable, set by a 
researcher or device operations — while the frequency of movement is tethered to 
the “natural” or “bodily” timing of movement of the oscillator, which depends 
chiefly on k, m and β, with only a minor dependence on the strength of the field.     
 
§ 3. VE movers drive elemental movements of an oscillator module. 

a. VE movers provide pumping forces 
b. static reference positions of a hybrid force device 
c. movement module 
d. repertoires of movement of the movement module 
e. details of movement production and control 

  



  

    © 2022 Robert Kovsky 
Creative Commons Attrib-NonComm-NoDerivs 3.0 Unported License  

8 

 a. VE movers provide pumping forces 
In large part, designs in this project do not require a specific source or form for the 
pumping force.  As with motor vehicles, much the same movements can be 
produced using a variety of energy conversion methods — internal combustion or 
electricity or steam.  In this project, pumping forces are provided by VE movers.  
Operations of VE movers are congruent with those of VE bursters and modules, 
subjects of anticipated future investigations as discussed below.   
VE mover operations were defined and applied in the wriggler project.  For 
purposes here, a mover is powered by its own source of VE and is driven by a 
bursting device or "burster" in a device module.  A burster sends a pulse burst to 
the mover.  Each burst contains n pulses, where the pulse number n can vary from 
1 to 15.  A pulse is an instantaneous transfer of VE, like an electrical impulse.  A 
pulse carries one unit of VE and resembles an action potential in nerves.  
In response to a pulse burst, a mover produces a twitch with a force strength that 
depends on n and on the variable length of the mover.  For purposes here, with a 
specification revised from that in the wriggler project, a burst results in a mover 
twitch that lasts a specific period denoted Λ.   Definition of Λ may depend on the 
application, n, etc.   
While it is being produced, the twitch has a force strength F = nF1 – (j × ∆L), 
where n is the pulse number and ∆L denotes the momentary shortening of the 
mover from its maximum length L.  F may change during a twitch.  Other mover 
specifications are F1, which denotes a fundamental unit of force; and j, which 
denotes a dissipation factor.  The dissipation factor j resembles a spring stiffness k 
but the mover does not conserve energy and has no "potential energy."  The burster 
sends a continuing stream of bursts to maintain a force.  If no signals are sent, the 
mover is flaccid and has no force production or effect.  
For purposes here, Λ starts just after the spring starts to compress following a 
moment of pause and reversal — and ends just after the ball passes y0 — thus 
lasting for approximately ¼ of a cycle.  The mover pulls while the spring is pulling 
and the mover force augments the spring force for that period. 
As in other SHO paradigms, the amplitude of a cycle is highly variable (with levels 
1 through 15) while the frequency of a cycle is tethered to that of an undriven 
version and based on k, m and β, with variations based on other quantities.  
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 b. static reference positions of a hybrid force device 
Fig. 5 shows reference positions of a hybrid force device that combines a Hooke's 
Law spring with a VE mover.  VE movers provide pumping forces for oscillators 
by twitching during the first half of the compression period of the spring.  In Fig. 
5(a). 5(b) and 5(c), movers are flaccid and balls are stuck in static positions. 
As shown in Fig. 5(a), the static unstressed position of the spring with a flaccid 
mover is still denoted y0.  In Fig. 5(b), the maximum length of the mover is L, 
which corresponds to an expansion of the spring where ∆y = –D.  This defines a 
strict operational limit of the device; movement in the downward direction is 
prohibited past this limit.   There is a mirror point in the compression half of the 
cycle where ∆y = +D (Fig. 5(c)) but no limit applies.  The ball can rise above that 
point if enough energy is pumped in during the ¼ cycle where the spring force is 
augmented by an active mover, so long as dissipation is sufficiently high that the 
ball remains above ∆y = –D during the expansion stroke. 

 
In an operating version shown in Fig. 5(d), the point of maximum compression of 
the spring with n=15 is denoted by "+A" ; +A is less than +D.  Fig. 5(d) includes a 
scale or series of positions from y=y0 to y=+A.  Each position corresponds to a 
point of repetitive maximum spring compression produced by twitches driven by 
pulse bursts with a specific pulse number n. 
If pulse number n = 0, there are no pulse bursts; the mover is always flaccid and 
the ball never moves away from y0.  If n is changed from 0 to another number, 
after a helpful nudge and enough time, the new repetitive position will correspond 
to the new n.  (See discussion on details below.)  Whenever the pulse number holds 
at a steady n > 0, the repetitive maximum position of the oscillator will hold steady.  
Let ∆yn denote the repetitive maximum position corresponding to bursts with pulse 
number n.  There is an orderly progression:  ∆yn+1 > ∆yn.  
  



  

    © 2022 Robert Kovsky 
Creative Commons Attrib-NonComm-NoDerivs 3.0 Unported License  

10 

 c. movement module and pausal movements 
The movement module shown in Fig. 6(a) becomes a unit of construction in arrays 
of oscillators in part B.  Likewise, pausal movements shown in Fig. 6(b) become 
units of construction in wavy locomotion movements produced by such arrays.  
The movement module incorporates two identical hybrid force devices in a fixed 
arrangement that produces multiple repertoires of movement, e.g., symmetrical 
oscillations.  Fig. 6(a) shows the module in a stroke to the left, just after movement 
has reversed direction and the left mover has started producing a twitch.   The 
twitching mover is bright magenta and the flaccid mover is dull purple.     
Movement of the ball pauses at a moment of reversal, which is also given other 
names depending on the application, "pausal moment," "sticking moment" or 
"switching moment."  At a pausal moment, further action can first be postponed by 
temporary sticking, and then resumed, the same as if uninterrupted, when the 
sticking is removed.  The length of such a pausal moment ranges from 0 to ∞.     

 
 
 d. repertoires of movement in the movement module 
 (i) Symmetrical oscillation movements are continuous, repetitive back-
and-forth movements of the ball.  The same number of pulses is sent to left and 
right movers in alternating streams.  Pulse streams, movements and positions of the 
ball are all symmetrical with respect to y0.  There are 15 symmetrical oscillation 
movements driven by bursts with pulse numbers 1 through 15. 
 (ii) Pausal movements are based on oscillatory movements, with the 
addition of a "sticking feature" that operates at pausal moments.  Here, the 
"sticking feature" is an arbitrary pedagogical invention.  A "sticker device" is 
introduced below that applies similar sticking features in operational designs.   
A pausal movement starts with a pausal moment on one side of the module and 
concludes with a pausal moment on the other side.  Symmetrical pausal 
movements are an important special case. 
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Symmetrical oscillation movement can be analyzed into alternating symmetrical 
pausal movements with zero-length pausal moments between pausal movements.    
As an initial guess, the period of the movement should be close to ω0 and tethered 
to k, m and β.    
Suppose that as symmetrical oscillating movement is ongoing, as shown in Fig. 6a, 
and that a Λ period starts in the left mover just after the ball pauses at position yn.  
Force produced by the left mover, combined with force from the spring, is just 
sufficient to overcome dissipation and to carry the ball to position –yn, where again 
it pauses and again the direction of movement reverses.  Then the right mover 
produces a twitch, the same strength as the prior twitch of the left mover with 
appropriate changes of sign.  The next reversal occurs when the ball pauses again 
at position yn. 
With a sticking feature, a pausal moment can be maintained for an arbitrary or 
indefinite period of time.  A pausal movement begins at the conclusion of one 
pausal moment and ends at the commencement of the next pausal moment.  In 
continuous operations, each pausal moment follows a pausal movement; and each 
pausal movement follows a pausal moment.  The whole movement has a structure 
of alternating pausal moments and pausal movements.   
The strength of a twitch and the length of a pausal moment are both variable.  Both 
variations are under the arbitrary control of a researcher or other device operations.  
A change in one variation does not affect the other; they are independent.    
 (iii) The repertoire of movements is enlarged to include changing 
movements that occur after a change in the pulse number from n to m.  After a 
period of change, the new ym position has been established.  See subsection (e) 
below for more details. 
 (iv) Impulsive movements are additional movements caused by pulse 
burst signals from a researcher or other device operations.  These can be arbitrary 
in form and timing; the class can be defined expansively so as to include all 
possible movements of the module with operations restricted by Λ, etc.   
One use of impulsive movements is to start movement in a module that is resting at 
y0.  After movement is started, inherent operations of the module take over.  
Sensory signals discussed in the metamorphosis project can trigger or control 
impulsive movements that strengthen a weak symmetrical oscillation movement or 
that speed up completion of a changing movement.   
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e. details of movement production and control 
The hybrid module in Fig. 6 operates according to principles of classical physics, 
plus augmentation by VE principles.  Equations of motion can be solved by 
standard methods.  VE conversions are separable from conserved energy 
conversions; only conserved energy conversions are used in this project. 
From the VE perspective, energy comes in different forms; and devices convert 
energy between forms.  No new energy appears in any conversion; rather, some 
energy is lost or dissipated in every actual conversion.  In idealized paradigms, 
however, energy loss during a conversion may be presumed to be zero.  This 
presumption helps to clarify paradigms and constructions.  Presumptively, practical 
workarounds make actual applications possible despite actual energy losses. 
In this project, energy comes in the following forms: 
1. Potential energy stored in springs; 
2. Kinetic energy carried by masses in motion; 
3. Energy carried away by dissipation based in a viscous fluid; 
4. Work performed by movers; and 
5. Virtual Energy for movers from arbitrary sources. 
Energy conversions of concern here are: 
a. Ideal springs inter-convert potential energy of a spring and kinetic energy of 

a moving mass, based on the force relation:  m×(d2∆y/dt2) = FB = – (k×∆y). 
b. A viscous fluid converts kinetic energy of movement into dissipated energy, 

reducing the force on the mass by ∆Fa = – 2m×β×(d∆y/dt) . 
c. Movers convert VE into kinetic energy based on a force relation that adds to 

the force on the mass by ∆Fb = nF1 – (j×∆L) for the period Λ in a cycle. 
During a pausal moment, the only energy is potential energy in springs.  The class 
of symmetrical pausal movements has 15 values for such maximum potential 
energy, corresponding to 15 sizes of pulse bursts.  Potential energy is the same at 
the end of such a movement as at the beginning.  Summed over a symmetrical 
pausal movement, and applying a conservation principle, the kinetic energy 
provided by a working VE mover equals the kinetic energy lost through dissipation.   
Analysis of changing movements illustrates details of operations.  Suppose that the 
module is driven by bursts with n=3 and is producing symmetrical oscillatory 
movements of size yn = ±3.  Suddenly, n changes from n=3 to n=12, which is 
thereafter maintained in a steady stream.  Perhaps the first n=12 twitch starts when 
the mass is at yn = +3.  A spring with low n holds a relatively small amount of 
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potential energy.  The extra mover force carries the mass beyond yn = –3 but the 
small contribution from potential energy leaves it short of yn = –12.   The next 
twitch will carry it closer to yn = + 12, but perhaps still short.  Eventually, yn = +12 
will be established, perhaps with the assistance of an impulsive movement.   
Conversely, suppose that the maximum position of the mass is yn =  ±12, 
maintained by steady n=12 pulse bursts.  Suddenly, n changes to n=3.  With 
dissipation occurring during a large travel path, the resulting mover force is 
insufficient to carry the ball to yn = –12, although still beyond yn = –3.  In 
successive cycles, movement dwindles down to yn = ±3.  An impulsive twitch by 
an opposing mover will brake the movement if faster dwindling is desired.  
Similar courses of movement occur as to any asymmetrical movement that appears 
in the symmetrical module driven by symmetrical signals:  symmetrical forces and 
operations extinguish asymmetries.    
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Part B.  Arrays of Oscillators 
 

4. Compression waves in arrays of alternating springs and masses 
Simple arrays are made of alternating masses and springs.  Fig. 7(a) shows a linear 
array where masses slide on a frictionless track and where the masses on the ends 
(A  and G) are secured to immobile posts.  Fig. 7(b) shows a circular array where 
the masses ride on gliders on a frictionless track.   
Masses in an array are all the same except for letters that name them.  Springs are 
all the same. Both arrays produce compression waves, where springs expand and 
compress without bending and masses push and pull each other along direct lines.  
Movements are constrained to occur in one dimension, whether linear or circular. 
Dotted black lines indicate positions.  Masses and springs in Fig. 7 arrays are in 
central unstressed static positions.   

 
Mathematical investigations of the two arrays are similar, showing that movements 
can be organized by means of normal modes.  A normal mode is a simple kind of 
movement characterized by a single frequency.  Movements other than normal 
modes are constructed mathematically from normal modes and combine multiple 
normal modes and multiple frequencies.    
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Further development proceeds with the circular array.  Discussion returns to the 
linear array for concluding designs.    
Fig. 8 shows a normal mode of oscillation in the 8 unit circular array.  For 
purposes of notation, let Spr(A,B) denote the spring between mass A and mass B 
and so forth for other springs.  In this mode of oscillation, movements of 4 springs 
replicate each other [Spr(A,B), Spr(C,D), Sp(E,F), Spr(G,H)]: and movements of 
the other 4 springs replicate each other [Spr(B,C), Spr(D,E), Spr(F,G), Spr(H,A)].  
The two sets of springs have exactly opposite operations.  While Spr(A,B) is 
compressing, Spr(H,A) and Spr(B,C) are expanding.   

 
In the normal mode represented in Fig. 8, all movements repeat with a single 
natural frequency ω1.  Fig. 8 shows positions at a particular instant, like a snapshot 
that is taken just before a pause.  In the next few instants, springs that have been 
expanding — will pause — and then begin to compress; springs that have been 
compressing — will pause — and then begin to expand.   
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5. VE movers drive compression waves in the circular array.  

 The next stage of the circular array construction parallels the construction of the 
individual SHO above, adding a dissipative medium and VE movers that drive 
oscillations, as shown in Fig. 9.  All 8 movers are the same kind of device.   
Movers are named in the style of springs, e.g., mover (A,B). 
The instant shown in Fig. 9 is just after movers have been activated, which occurs 
just after a moment of reversal.     

  
The dissipative medium damps and extinguishes all movements except oscillatory 
movements caused by movers. Mover forces are applied for about ¼ of a cycle, 
starting from just after a pausal moment of maximum expansion and ending when 
the length of the mover becomes less than y0.  Movers are flaccid during the rest of 
the cycle.  In Fig. 9, active movers are bright and flaccid movers are dull.   
Mover forces are initially small compared to the spring force and are initially 
applied at a frequency equal to the natural frequency ω1 as measured in a Fig. 8 
version that has neither damping nor pumping.    
Then, in processes of bodily experimentation, the frequency is varied bit by bit and 
changes in maximum amplitudes of movements are measured by means of sensory 
devices discussed in the metamorphosis project. According to the physics 
paradigms, if dissipation is low, the resonant frequency that maximizes the 
amplitude of movements should be found close to the natural frequency ω1.  
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6. A controlling body of VE modules drives movers and compression waves. 
The construction next adds VE modules that drive the movers.  In Fig. 10,  
collective operations are based in the central body B that also contains 8 individual 
modules in the form of slices of a pie-shaped group.   Red lines denote projections 
that carry drive signals from a module to a mover.  Blue lines denote projections 
that carry sensory signals from a mover to a module and to the body B. 

Operations of modules are influenced both by individual sensor signals and also by 
collective conditions of B.  Collective conditions of the body are subject to 
changes that can be based in the environment, internal operations or a researcher.  
As a result of changes in collective conditions, movements are changed and 
repertoires of movements are changed.  Future investigations aim to develop 
methods for combining individual and collective influences in modular operations.     

 
In Fig. 10, alternating discharges in modules drive alternating force patterns in 
movers.  Bright modules discharge pulses into active movers during early 
compression of a spring.  Dull modules are silent; their movers are flaccid. 
The pattern of discharges in the group of modules in Fig. 10 resembles a normal 
mode of vibration of a drum head or a membrane in musical acoustics.  Anticipated 
investigations involve operations of a group of modules with individual and 
collective aspects that depend on attributed material properties of B.  Adapting 
standard paradigms, degrees of freedom include mode of movement, frequency of 
stepping and direction of movement (clockwise or counter-clockwise).   
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7. Wavy locomotion movements in circular and linear arrays are 
produced by hybrid designs of classical parts and VE parts 

a. Glicker devices and sticking states 
b. Repertoires of movement produced by a circular array with glickers 
c. Application to a linear array of masses, springs, VE movers and glickers 
d. Whole-body wavy locomotion movements of the linear array 
e. Ripple-wave locomotion movements of the linear array 
f. Anticipations of control bodies and entrained sensory-mover modules  

-------------------------------------------- 
a. Glicker devices and sticking states 
Fig. 11 shows a new device, the glicker device or "glicker," replacing the glider 
device used previously.  The glicker adds a new sticking state or "sticker" to a 
glider.   A sticker is fixed to the track; lateral forces cannot move it at all.  
The glicker device switches between two states:  
(1) the bright green "glider" state that is mobile; and 
(2) the dull green "sticker" state that is immobile. 
A red projection carries a switch signal from a VE 
control module.  A switch signal activates a toggle: 
a gliding state changes into a sticking state; or 
a sticking state changes into a gliding state.  

 
A restriction on operations is that the state of a glicker device can change only at a 
moment when the device is stationary or when movement pauses, e.g., during a 
pausal moment as springs change from expanding to compressing or vice-versa.   
In other words, a switching moment can accompany a pausal moment.  Movers 
must be flaccid during a switching moment. 
Perhaps the timing of the switching moment is controlled by a researcher.  Perhaps 
a module can be trained to switch according to a sensory cue.  Perhaps a glicker 
device can hold a switch pulse and then switch states when a pause occurs.   
[In similar movements of a person walking slowly with small steps, modeled by 
the pendulum paradigm, the forward foot pauses just above the ground at the end 
of a stride; then, it is brought down and fixed to a foothold.]  
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b. repertoires of movement produced by the circular array with glickers 
Fig. 12 shows the final design in the line of development using the circular array.  
Gliders have been changed to glickers.  In the center of B, a new pie-shaped group 
of green modules controls the glickers.  This design produces multiple repertoires 
of movement.  Fig. 12 shows a moment when all movers are flaccid.  
 1. If all glickers are maintained as gliders, the new design produces the 
same oscillatory movements as the Fig. 10 design. 
 2. Movement repertoires of the individual mover module (Fig. 6 in § 3) 
reappear in an array of mover modules when certain glickers stay in the sticking 
state for extended periods called fixed sticker states.  Fixed sticker states divide the 
circular array into independently operating subsets.   
In Fig. 12, suppose that glickers B, D, F and H are kept in the sticking state.  
Movement of mass A between H and B is the same as that of the ball in the 
movement module in Fig. 6a, mapping a line into an arc of a circle.  The same 
movement occurs with masses C, E and G.  Movements of A, C, E and G can be 
independent of each other or they can be driven collectively. 

  
Various repertoires of movements are produced when different sets of glickers stay 
in fixed sticker states, e.g., when glickers D and H are kept in fixed states and all 
other masses ride on gliders.   
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  3. Locomotion movements.   Let Fig. 12 represent a moment when 
masses A, C, E and G are moving clockwise and approaching a pausal moment.  In 
the moment just after that shown in the figure, let glickers A, C, E and G switch 
into sticking states so that the system pauses.  Then glickers B, D, F and H switch 
into gliding states and start moving with VE assistance —  until they pause at the 
end of the step and switch to sticking.  Successive pausal moments and pausal 
movements produce a clockwise locomotion movement.  Locomotion movements 
can be reversed and similar counter-clockwise movements are produced. 
 
c. Application to a linear array of masses, springs, VE movers and glickers  
The linear array shown in Fig. 13 produces repertoires of movements that 
correspond to those produced by the circular array and provides clearer examples 
of locomotion movements. 
 

 
Looking at arrays holistically, the Fig. 13 array is identical to that shown in Fig. 7a.  
The short masses "LP" (Left Post) and "RP" (Right Post) serve the same function 
in Fig. 13 as "posts" in Fig. 7a; their state of immobility is indicated by the dull 
green sticker state of the glickers that hold them.  The size of the LP/RP mass is 
chosen for easy production of "sliding movements" discussed below. 
In Fig. 13, all eight springs have the same k.  All eight internal movers are the 
same (thus excepting the two larger movers at the ends).   All masses A through G 
have the same m value.   Masses A and G are spread out in larger-sized bodies and 
each rides on two gliders but these differences do not affect movements.    
 
d. Whole-body wavy locomotion movements of the linear array 
The Fig. 13 linear array produces desired locomotion movements.  First, operations 
are shown for central segments shown in Fig. 14.  Operations at the ends of the 
linear array are then defined to match movements of the center.   
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Fig. 15 shows a stepping cycle in a locomotion movement of the central segments.  
In Fig 15(a), the cycle starts with a pausal moment of indefinite length.  All 
glickers are in the sticking state.  Potential energy is stored in springs.  Movers are 
flaccid.  The cycle clock on the left reads 0.0. A cycle will be completed when the 
cycle clock reads 1.0. 
 
 
 
(b)  In the first moment of the cycle, 
glickers C and E switch to the gliding 
state; next, movers (C,D) and (E,F) are 
activated.   
(c)  Dynamic movement is occurring.  
Springs are close to y0.  After movers 
(C,D) and (E,F) switch off in the next 
moment, all energy will be kinetic.  
The clock reads about about 0.25.  
(d)   Clock approaches 0.5 and a 
pause.  Kinetic energy is low and 
springs are charged with potential 
energy.  Movers are flaccid. 
(e)  Gliders C and E change to 
stickers; a pausal moment follows, 
similar to conditions in (a). 
(f)  The second dynamic movement in 
the cycle.  Like conditions in (c), 
springs are close to y0.  After movers 
switch off, all energy will be kinetic. 
(g)  Gliders B, D and F switch to 
stickers and all segments enter into 
another pausal moment. 

 

 
The size of a step is a variable that depends on the pulse number n that drives all 
the movers.  If glickers A, C, E and G are kept in fixed sticker states, a change in 
pulse numbers will charge or dissipate energy in springs and change the size of 
steps.  (See discussion in § 3.)  The amount of time required for a step varies little 
with n and depends chiefly on k, m and β.  Fastest movements occur when pausal 
moments have zero length.   
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Fig. 16 and Fig. 17 show movements of 
end pieces that occur synchronously with 
those of Fig. 15, omitting stages b. and d 
that are shown in in Fig. 15. 
In Fig. 16(c), masses E and G are in 
dynamic movement.  G's second glider 
and the distribution of mass in G  do not 
affect the movement.  The mover and 
spring between G2 and RP operate the 
same as those between E and F. 
The movement of RP in Fig. 15(f) is a 
new sliding movement that occurs inside 
G, which is fixed.  The force produced by 
the big mover between RP and G1 is 
augmented by the spring and opposed by 
the other mover.  Movers and springs in 
such a configuration produce a spectrum 
of balancing positions that are subject to 
multiple possible adjustments.    

 
 

 

A sliding movement is a quasi-static 
movement rather than a dynamic 
movement.  The sole function of movers 
(G1, RP) and (A1, LP) is to perform 
sliding movements and sufficient strength  
is presumably provided.  Operations do 
present questions of timing.  A and G 
glickers are fixed for ¾ of a cycle and this 
should be sufficient for slower controlled 
movements of the posts.   
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e. Ripple-wave locomotion movements in the linear array 
Another mode of locomotion movements is called ripple-wave locomotion, where 
a local locomotion movement passes through the array in sequenced sets of movers, 
first through front parts and then through rear parts.  (Ripple-wave movements can 
also start at rear parts and pass towards the front.  Movements discussed in this 
project can generally be produced in the direction contrary to that shown.)   
In the cycle shown in Fig. 18, pausal moments occur when the cycle clock is at 0.0, 
0.2, 0.4, 0.6, 0.8 and 1.0. The figure mostly shows central dynamic moments.    
 

 
 



  

    © 2022 Robert Kovsky 
Creative Commons Attrib-NonComm-NoDerivs 3.0 Unported License  

24 

f. Anticipations of control bodies and entrained sensory-mover modules  
This project is chiefly concerned with adaptations of standard physics paradigms.  
The only VE devices are movers that produce forces conformable to conserved 
energy principles.  A secondary concern is preparation for anticipated development 
of VE burster modules and controlling bodies, as suggested in Fig. 10 and Fig. 12.   
Fig. 19 shows possible developments for a control system in the linear array in a 
general conceptual design.  Each internal mover is driven by a module in the shape 
of a sector of a circle, resembling a piece of a pie.  The driving module is part of a 
group of modules that makes up the whole pie or circle, resembling the design in 
Fig. 10.   Each group of modules holds a representation of the whole array of 8 
internal movers.  The driving module is larger and more complex than other 
modules in the group.  A group of modules is based in a common control body and 
all modules operate synchronously, that is, with a common rate and coordinated 
values.  Each control body is specific to one mover.  Modules sharing a control 
body manifest both individual operations and controlled collective operations. 
A different kind of control body and module sends switching pulses to glickers.  
End pieces of the array also incorporate special control bodies and mover modules. 

 
In Fig. 19, all the various control bodies, mover modules and glicker modules are 
maintained in synchronous operations through a principle of entrainment.  
Entrainment was first studied by Christiaan Huygens (1629-1695) as to pendulum 
clocks and the concept was soon extended to spring-driven clocks.  Perhaps several 
identical spring-driven clocks are placed on a single table; soon their ticking 
adjusts so that they all tick together.  Numerous studies suggest that collective 
vibrations in the table accomplish this entrainment and that physical properties of 
the table may determine whether entrainment occurs and specific details of 
entrained operations.   
Applying a principle of entrainment, the yellow full-length sinous control body in 
Fig. 19 maintains a whole-body beat that produces synchronous discharges of 
pulses in all control bodies and modules (or in sequenced sets, as in a ripple-wave), 
which thus participate in both collective operations and individual operations.   
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